Detect extracellular vesicles such as exosomes quickly and easily # Exorapid-qlC® Immunochromatographic kit for extracellular vesicles "Exorapid-qIC® Immunochromatographic kit for extracellular vesicles" can detect extracellular vesicles (EVs) such as exosomes, microvesicles, apoptotic bodies, and oncosomes for research. This kit was jointly developed with Shimadzu Corporation and uses "gold nanoplates" developed by Dai Nippon Toryo Co., Ltd. - Vesicles secreted from cells, etc. - Contains characteristic surface proteins (Tetraspanins: CD9, CD63, CD81) #### Features of EVs - 1. Intercellular communication - 2. Regulation of immune responses - 3. Tumor progression and metastasis - 4. Regenerative medicine - 5. Use as a biomarkers EVs have such diverse functions. Thus, they are being applied in various research fields. #### Features - This immunochromatographic can detect extracellular vesicles (EVs). - Blood (serum, plasma) and cell culture supernatant can be used. - The test time is approximately 45 minutes (two-stage detection), for rapid evaluation. #### Kit components - ① Immunochromatographic test strip - ② Gold nanoplate labeled antibody [lyophilized product] - 3 Standard substance [lyophilized product] - ④ Dilution solution - (5) Washing solution - 6 Assay microplate 96 wells - (a) Antibodies immobilized on the test paper capture the EVs in sample. - (b) Gold nanoplate labeled antibody binds to the EVs immobilized on the test strip in step (a). - (c) A blue lines is visually confirmed by gold nanoplate labeled antibodies bound to EVs. #### Lineup | Product name | Product number | Size | |---|----------------|-----------------| | Exorapid-qIC® Immunochromatographic Kit for Extracellular Vesicles (CD9) | DNT-EXO-K01 | 1 KIT (40test) | | Exorapid-qIC® Immunochromatographic Kit for Extracellular Vesicles (CD63) | DNT-EXO-K02 | 1 KIT (40test) | | Exorapid-qIC® Immunochromatographic Kit for Extracellular Vesicles (CD81) | DNT-EXO-K03 | 1 KIT (40test) | | Exorapid-qIC® Immunochromatographic Kit for Extracellular Vesicles (CD9, CD63,CD81 set) | DNT-EXO-K123 | 1 KIT (6test×3) | #### Comparison with conventional analysis methods (According to our survey) | | IC
(Exorapid-qIC®) | ELISA | WB | NTA | FCM | |-----------------------|------------------------------|----------------------------|---------------------|-------------------|-------------------| | Test time | Short
(0.75 hours) | Short to mid.
(3 hours) | Long
(5-8 hours) | Short
(1 hour) | Short
(1 hour) | | Operability | bility Very good Go | | Neutral | Good | Good | | Throughput | High | Very high | High | Neutral | Neutral | | Detection sensitivity | Detection sensitivity High H | | High | Very high | Very high | | Accuracy | Neutral | High | High | Neutral | Very high | | Initial cost | al cost Very low Low | | Low | High | High | | Analyzer | Unnecessary | Necessary | Necessary | Necessary | Necessary | ELISA: Enzyme-linked immunosorbent assay NTA: Nanoparticle Tracking Analysis WB : Western blotting FCM : Flow cytometry #### **Application Data** ### Calibration curve CD9 kit (DNT-EXO-KIT01) CD63 kit (DNT-EXO-KIT02) CD81 kit (DNT-EXO-KIT03) It is possible to create a calibration curve using the standard substance included with each kit. (The intensity of the test line is analyzed and graphed using Image.) ## Quantitative analysis of EVs EVs calibration curve (CD9 kit) # High linearity in EV count and detection intensity was obtained *1: Measured with lateral flow reader (C10066-10, HAMAMATSU PHOTONICS K.K.) #### Monitoring of EVs amount (CD9 kit) The amount of EVs can be monitored by direct testing of the culture supernatant (cell line: MCF7) # Confirmation of Drug-induced promotion of EVs secretio (CD9 kit) Simple monitoring of EVs secretion from cells is possible (cell line: HCT116) *2: Cucurbitacin B ### Evaluation with cancer cell-derived exosomes *Uses test strips for the CD9 kit and gold nanoplate-labeled antibodies for CD9, CD63, and CD81. | Blank | | | de | MCF7
derived EVs | | | MM231-LN
derived EVs | | | HCT116
derived EVs | | | |-------|------|------|-----|---------------------|------|-----|-------------------------|------|-----|-----------------------|------|--| | CD9 | CD63 | CD81 | | | | | | _ | | | - | | | | | = | | The intensity of detection of CD9, CD63, and CD81 differed among cell types, revealing their characteristics Our kits can be used in combination with CD9, CD63, and CD81 kits depending on the test system. #### Evaluation with serum ①Unpurified sample, ②Ultracentrifuged fraction, ③Affinity-purified fraction after ultracentrifugation, and ④Direct affinity-purified fraction of serum (pooled product) were evaluated using each kits. #### Immunochromatographic analysis #### Protein quantification (BCA assay) AF reduced the concentration of contaminating proteins, improving the detection intensity of CD9 and decreasing the detection intensity of CD63 and CD81. Although there will be differences in EVs recovered with each purification method, nonspecific detection is expected to be reduced with purification methods that reduce protein concentration ## Exorapid-qIC® Immunochromatographic kit for extracellular vesicles #### Evaluation with mesenchymal stem cell (MSC)-derived exosomes #### ①Relationship between particle concentration and detection intensity We evaluated the cell culture supernatants of adipose-derived and dental pulp-derived MSCs. Hence the EVs concentration was low, they were concentrated by ultrafiltration. Use Exorapid-qIC® (CD63) Uses test strips for the CD63 kit and gold nanoplate-labeled antibodies for CD9, CD63, and CD81. *Particle concentration: 14.6×1010 particles/mL - Using a CD63 kit, EVs in the culture supernatant of adipose-derived and dental pulp-derived MSCs were detected in a concentration-dependent manner. - EVs containing both markers (CD9 and CD63) were detected in the culture supernatant of dental pulp-derived MSCs. #### 2 Combination with purification kits EVs in the culture supernatant of adipose-derived MSCs were concentrated and purified using a commercially available kit and detected by Exorapid-qIC°. | Purification method | Requierd time
[hour] | Cost | Particle concentration [x1010 particles/mL] | Recovered volume
(Per 1mL of stock sample) [μL] | (Par Imi of ctock cample) | Protein concentration (μg/mL) | |-------------------------------|-------------------------|------|---|--|---------------------------|-------------------------------| | ①Unpurified | _ | _ | 2.5 | 1,000 | 2.5 | 727 | | ②Affinity purification | 2~3 | High | 6.9 | 50 | 0.35 | ND | | ③Ultrafiltration + EV-Capture | 1.5 | Low | 8.7 | 60 | 0.52 | 39 | $\hbox{EV-Capture}^{\hbox{$\,$}\tiny{M}} \ \hbox{is a product that utilizes the negative charge of EVs to separate and collect them using a spin column}$ - Even samples with low concentrations of EVs can be detected in a short time in combination with concentration and purification methods. - Combination with ultrafiltration and EV-Capture™ enables "quick," "easy," and "inexpensive" purification and concentration. EV-Capture[™] | | Product name | No. | Size | |---|--|-----------|-----------------| | E | V-Capture™ EV Purification Spin Column Kit | EVP01-010 | 1 kit (10 prep) | ## Contact address If you have any questions, please feel free to contact us at the address below! #### **About Sales information** # COSMO BIO USA 2792 Loker Ave West, Suite 101 Carlsbad, CA 9200, USA URL: www.cosumobiousa.com Phone/FAX:(+1)760-431-4600 Email: info@cosumobiousa.com ## About technical information Minami-Senba 1CHOME, Chuo-ku, Osakashi, Osaka, 542-0081, Japan URL: https://www.dnt.co.jp Email: dnt10023120@star.dnt.co.jp