粉体塗料の溶融過程におけるレオロジー

Rheology of Thermosetting Acrylic Powder Coatings in Melting and Curing Process

> 技術本部 基礎研究第1部 Fundamental Research Laboratory

石原 眞興 Masaoki ISHIHARA 佐野 秀二 Shuji SANO

要旨

エポキシ基を含有するアクリル樹脂と1,10 - デカンジ カルボン酸からなる熱硬化形粉体塗料の溶融および硬 化過程における動的粘弾性挙動について解析した。

その結果、定常流測定から得られた溶融過程におけ る粘度挙動はアンドレイドの粘度式で近似できることが分 かった。また、硬化過程における貯蔵弾性率の実測値と 熱分析から得られた反応率を用いてパ - コレ - ション理 論に基づくスケ - リング則から算出した理論値との間に 相関性が認められた。

Abstract

We examined dynamic viscoelastic behavior of thermosetting powder coatings consisting of acrylic resins with various amount of epoxy group and 1,10decanedicarboxylic acid in melting and curing process.

It was proven that the dynamic viscosity could be applied in Andrade's viscosity equation instead of viscosity obtained from steady flow measurement in the melting process.

Scaling rule based on percolation theory was applied to the storage modulus change in the curing process. It was found that there was the good correlation between the measured value and theoretical value calculated using reaction ratio, which was measured by thermal analysis.

1. 緒言

地球環境保護対応や資源の有効利用などの動きが 世界的規模で進んでいる。この動きに対し、塗料や塗装 の分野でも環境対応型塗料に代表される粉体塗料は 水系塗料や無溶剤形塗料等とともに応えるものである。

粉体塗料は、通常粒子を帯電させて被塗物表面に塗 着させ、加熱して塗膜を形成させる。粘度及び弾性率は 温度が上昇するにつれて溶融による低下と反応の進行 による上昇が見られるが、この溶融硬化過程における構 造変化がもたらす力学的特性は非常に複雑である。し かしながら、薄膜美装の要求を満足できる粉体塗料の 開発には溶融硬化過程における力学特性を把握するこ とが重要となる。

本報は、エポキシ基含有アクリル樹脂 / 二塩基酸の 熱硬化形粉体塗料における溶融硬化過程での力学特 性について検討した。

2. 実験

2-1 試料

表1に示したようにメタクリル酸メチル(MMA)とアクリル酸ブチル(BA)およびエポキシ基を含有するメタクリル酸グリシジル(GMA)から、エポキシ基濃度の異なる4種類のアクリルモデルポリマ - を合成した。このとき、ガラス転移温度(Tg)、重量平均分子量(Mw)および数平均分子量(Mn)が一定になるように設計した。

モデルポリマ - 名		MP1	MP3	MP4	MP5		
構成比 (mol%)	MMA BA	100.0	82.4	72.8	67.7		
	GMA	0.0	17.6	27.2	32.3		
特性値	Tg()	43.3	45.4	43.4	41.7		
	Mw	5070	4940	5000	4860		
	Mn	2700	2620	2680	2630		

表1 モデルポリマーの組成、特性値

表2には粉体塗料の配合を示した。1,10 - デカンジカ ルボン酸 DDA を硬化剤として、各モデルポリマ - 中の エポキシ官能基に対してモル比1:1になるように配合し、 乳鉢で混合した。

表2 粉体塗料の配合

粉体塗料名		S1	S3	S4	S5
配合()	モデルポリマ -	(MP1) 100.0	(MP3) 100.0	(MP4) 100.0	(MP5) 100.0
	DDA	0.0	18.5	27.7	32.4

2-2 昇温過程における示差走査熱量測定

示差走査熱量計(セイコ - 電子工業社製DSC220C) を用いて、0~250 の範囲を昇温速度5および10 / minで測定した(以下、DSC測定と呼ぶ)。

2-3 昇温過程における動的粘弾性測定

動的粘弾性測定装置(レオメトリクス社製ARES)を 用いて、115~250 の範囲を昇温速度5 /minおよび 10 /minのもとでの昇温過程における溶融と硬化につ いて動的粘弾性(G'、G'、*)を測定した。測定には半 径25.0mmのパラレルプレ-トを用い、プレ-ト間距離を 1mmとし、周波数9.42rad/sec、ひずみ1%とした。

3. 結果と考察

3-1 昇温過程におけるDSC測定結果

昇温速度10 /minにおける粉体塗料S5のDSC測 定結果を図1に示した。その結果、モデルポリマ - MP5 の溶融と硬化剤DDAの溶融に伴う吸熱が、各々61 、 114 に、また、GMAのエポキシ基とDDAのカルボン酸 基の硬化反応に伴う発熱が133~220 の間に見られた。 全発熱量と各温度における発熱量の割合から反応率を 算出した。

図2には、昇温速度10 /minにおけるS3~5および5 /minにおけるS5の反応率変化を示した。

温度に対する反応速度(反応率変化の傾き)は、同じ 昇温速度ではGMAのモル濃度が高いものほど速くなる

3

図2 DSC測定の発熱量から求めた反応率

傾向にあった。これは、反応に関与するエポキシ基とカル ボン酸の濃度が高いために衝突頻度が高くなったため と考えられる。また、同じ試料では昇温速度の遅い方が 温度に対する反応速度は速くなる傾向にあった。昇温 速度が速い場合には、反応がその温度に追随できなか ったためと考えられる。

3-2 昇温過程における動的粘弾性測定結果

昇温速度10 /minでのS3~5および5 /minでのS 5の貯蔵弾性率G'の変化を図3に示した。

図3 等速昇温硬化過程における貯蔵弾性率の変化

その結果、同じ昇温速度では、GMA濃度が高い、す なわちDDA配合量が多いものほど硬化反応に伴う貯蔵 弾性率の上昇は低温側で認められる傾向にあった。

また、昇温速度が速くなると弾性率が上昇し始める温 度や同じ値を示す温度は高くなる傾向にあった。これは 温度上昇に対して溶融に伴う粘度低下が追随できず、 硬化反応の開始を遅延させたこと、さらに速い昇温のも とで試料の温度上昇が追従できていないことが考えられる。

3-3 溶融過程へのAndradeの粘度式の適用

本研究では、溶融硬化過程における塗料の状態変化 に追随させるために動的粘弾性測定を行ってきた。 一般的に定常流測定から得られる粘度に対して式(1) に示すAndradeの粘度式¹⁾²⁾³⁾が適用されるが、動的 粘弾性測定から得られた動的粘度 *に対して式(1)の 適用が可能かどうかを検討した。

exp(E/RT) •••••••(1)

ここで、Eは流動の活性化エネルギ・、Rは気体定数、T は絶対温度を表している。

流動の活性化エネルギ - EはGMAを含まないS1の 温度に対する動的粘度 *の変化からアレニウスプロット を用いて、その傾きから求めた。

昇温速度5 /minでのS5の溶融過程を例に、*実 測値と式(1)を適用した理論値を重ねて図4に示した。

図4 S5の等速昇温硬化過程5 /minにおける粘度実測値と理論値

その結果、全ての試料について実測値と理論値は相 関係数R² > 0.9で近似することが分かった。ただし、115 付近以上では実測値と理論値の間に相違が認めら れた。理論式には、DDAが配合されていないS1の溶融 から求めた活性化エネルギ - を代入しているため、S3~ 5に含まれるDDAの溶融により活性化エネルギ - にずれ が生じ、実測値と理論式に相違が生じたものと考えられる。

以上のことから、粉体塗料の溶融過程において動的粘 弾性測定から得られる動的粘度 *に対してもAndrade の粘度式が適用可能であることがわかった。さらに、DD Aを含む流動の活性化エネルギ - を求めれば、この系の 溶融過程における粘度の予測が可能であるものと考え られる。

3-4 硬化過程へのパ - コレ - ション理論の適用

粉体塗料は溶融過程で液体状となり硬化過程で反応を伴い固体状態へ変化することから、硬化過程はゲル化過程と見なすことができる。そこで、S3~5のゲル化点近傍における貯蔵弾性率G 'の変化をパーコレーション理論⁴⁾⁵に基づくスケーリング則⁵⁰での近似を試みた。

 $G' (P - Pc)^{n}$ (2)

ここで、G 'は貯蔵弾性率、Pは反応率、Pcは硬化が始ま る反応率(ゲル化点における反応率)、nは臨界指数を 表している。本研究においては、PおよびPcはDSC測定 から得られた反応率を用いて、弾性率の実測値と式(2) を適用した理論値が近似するようこnの値を求めた。また、 便宜上、Pcは貯蔵弾性率G 'と損失弾性率G"が交差す る温度における反応率とした。

図5にはS3の等速硬化過程5 /minにおける弾性率の実測値に対し、式(2)を適用した理論値を重ねたも

図5 S3の等速昇温(5 /min)における貯蔵弾性率と損失弾性率の 実測値と理論値

のである。このようにして各試料において実測値と理論 値が近似するようにnを決定した。その結果、nの値はモ デルポリマ - 中のGMAモル濃度や昇温速度に大きく左 右されず、2 2という値が得られた。この値は一般的に弾 性的な力の伝達が等方的に伝わっているときの値といわ れており、本研究に用いた試料も三次元架橋構造にお ける力の伝達が等方的に伝わっているものと考えられる。

4.まとめ

GMA濃度(エポキシ基濃度)が異なるアクリルモデル ポリマ - に二塩基酸を加えた熱硬化型粉体塗料の溶融 硬化過程における力学特性について検討した結果、以 下のことがわかった。

- 1)等速硬化過程で硬化に伴う弾性率の上昇は、GMA 濃度が高く昇温速度が遅いものほど低温側に認めら れた。
- 2)溶融時の粘度の変化は、Andradeの粘度式で近似 され、硬化時の弾性率の変化はスケ-リング則で近似 されることが半定量的に示された。

参考文献

- 1)中川鶴太郎、神戸博太郎 : レオロジ みすず書房 (1959)
- 2)小野木重治:化学者のためのレオロジ- 化学同人 (1982)
- 3)中道敏彦:塗料の流動と塗膜形成技報堂出版(1995)
- 4)小田垣孝:パ-コレ-ションの科学 裳華房(1997)
- 5) 甘利武司 編著: 色材物性工学 丸善(1997)